
Identifying system structure from controlled steady-state responses

Dongchuan Yu* and Fang Liu
College of Automation Engineering, Qingdao University, Qingdao, Shandong 266071, China

�Received 11 March 2008; published 3 July 2008�

We suggest a control based method to uncover the structure �i.e., the dynamics of each system, the coupling
direction, and coupling functions� of coupled systems. We show that driving a coupled system to steady states
can reveal the underlying controlled coupling structure. An example of interacting quantum dots is presented
to illustrate the structure identification method suggested.
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I. INTRODUCTION

Since the pioneering work of Pecora and Carroll �1�, syn-
chronization �2� of two coupled �chaotic� systems has been
extensively investigated. In order to understand and predict
the cooperative dynamic behavior of real coupled systems,
one first has to identify the coupling structure �i.e., the dy-
namics of each system, the coupling direction, and coupling
functions�. In terms of the phase reduction theory �3�, some
authors �4–7� suggested to reveal the coupling direction
which is applicable to understand functional relations be-
tween dynamical units in biological systems. However, these
well-developed coupling direction detection methods �4–7�
are not applicable to complex dynamical systems because the
phase often cannot be well defined or is available, as well as
synchronous systems because the information of coupling
direction is hidden. Determination of coupling functions �8�,
on the other hand, has also attracted much attention. The
coupling function estimation method �8� also depends on the
phase reduction theory �3� and therefore, similarly as for
coupling direction detection methods, it is not applicable to
complex or synchronous dynamical systems. In this brief re-
port, we suggest a control based approach to uncover the
coupling structure, more precisely to estimate the dynamics
of each system, coupling direction and coupling functions.
This coupling structure identification method can be applied
to complex or synchronous coupled systems.

We consider coupled systems, given by

ẋ1 = g1�x1� + h1�x1,x2� � f1�x1,x2� , �1�

ẋ2 = g2�x2� + h2�x1,x2� � f2�x1,x2� , �2�

where x1�RN and x2�RN �here R j denotes j-dimensional
real space� are state vectors of systems �1� and �2�, respec-
tively; g1 and g2 describe the node dynamics; h1 and h2 are
coupling functions. We assume that when the coupling com-
ponents are equal to each other, the coupling terms are equal
to zero; more precisely, hi�x ,x�=0 for all x and i. If
h1�x1 ,x2�=0 for all x1 and x2, then no coupling exists from
the second system to the first one. Otherwise, there exists a
coupling from the second system to the first one. We can

similarly determine the existence of coupling from the first
system to the second one.

In order to introduce a more general formalism that can be
applied to arbitrary systems, we shall summarize and refor-
mulate Eqs. �1� and �2� now as

ẋ = f�x� , �3�

where x�Rn is the state vector and f describes the system
dynamics. Assume that f is Lipschitzian, that is, there exists
a constant L such that ��yT−xT��f�y�− f�x����L�y−x�2,
where T is the transposed operator and �¯ � denotes the
Euclidean norm. We first show that driving the system to
steady states can be applied to estimate the structure, more
precisely enables us to estimate the function f; then we argue
that when Eq. �3� describes the coupled system �1� and �2�,
this structure identification method can be used to estimate
the dynamics of each system, coupling functions, and cou-
pling direction.

II. THEORY

We add a control item

u = − k�x − z� �4�

to the right-hand side of Eq. �3�, where k is the control gain
and z is a constant vector to be specified. The following
theorem �see the Appendix for its proof� provides the foun-
dation for structure identification and gives the rules to de-
sign the control gain for driving the system �3� to steady
state.

Theorem 1. When u has the form �4� with constant z
freely chosen and with k�2L+1, the system �3� is driven to
steady state s, satisfying

f�s� − k�s − z� = 0. �5�

We now show that sufficiently many steady-state driving
controls can be applied to identify function f from Eq. �5�.
When the mth driving control with constant zm is performed,
the resulting steady state sm satisfies

f�sm� = k�sm − zm� , �6�

which implies that we can estimate f�sm� by k�sm−zm�. After
n�1 driving controls are performed wherein each time zm is
gradually changed with a small enough rate in a desired
range, we obtain n data pairs �sm ,k�sm−zm�� to represent the
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input-output relation of the mapping f arbitrarily well by
fitting methods.

We now come back to the structure identification issue of
the coupled system �1� and �2�. First, we can conclude from
Eq. �5� that the steady-state-response equation of the coupled
system �1� and �2� actually reads

f1�s1,s2� = g1�s1� + h1�s1,s2� = k�s1 − z1� ,

f2�s1,s2� = g2�s2� + h2�s1,s2� = k�s2 − z2� . �7�

As analyzed above, functions f1 and f2 can be estimated with
high accuracy when sufficiently many driving controls are
performed in which each time z1 and z2 are gradually
changed with a small enough rate in a desired range.

Substituting s1=s2=d into Eq. �7� and noting hi�x ,x�=0
for all x and i, we obtain

g1�d� = f1�d,d�,g2�d� = f2�d,d� .

This implies that the intersection curve between surfaces s1
=s2 and fi�s1 ,s2� can be applied to approximate the function
gi. Furthermore, the function hi can finally be approximated
from the estimated fi�s1 ,s2�−gi�si�. If the estimated h1�s1 ,s2�
approximates to zero for any s1 and s2, then no coupling
exists from the second system to the first one; otherwise,
there exists a coupling from the second system to the first
one. Similarly, if the estimated h2�s1 ,s2� approximates to
zero for any s1 and s2, then no coupling exists from the first
system to the second one; otherwise, there exists a coupling
from the first system to the second one.

III. EXAMPLES

To illustrate the structure identification method suggested,
we treat two resistively coupled quantum dots �see Ref. �9�,
and references therein� whose current equations �see Fig.
1�a�� are described as

C1v̇1 = IB1 − J1�v1� + R1�v2 − v1� , �8�

C2v̇2 = IB2 − J2�v2� + R2�v1 − v2� , �9�

where vi is the voltage of the dot i, IBi is the external bias
current of the dot i, Ji�vi� is the current of the resonant tun-
neling diode �RTD�, Ci is the capacitance between the dot

island and the substrate, Ri is the coupling resistance. As
illustrated in Ref. �10�, coupled quantum dots can generate
wave propagation that is applicable to some data processing
�such as analog-to-digital conversion�. The wave propagation
behavior of coupled quantum dots is mainly determined by
the RTD model of each quantum dot, the external bias cur-
rents, and the coupling resistances. To design and predict
dynamic behavior of coupled quantum dots, we first have to
identify these structural parameters. This will be achieved
below using the structure identification method suggested. In
the following simulations, the RTD of each quantum dot is
modeled by a piecewise linear function shown in Fig. 1�b�.
Furthermore, C1=C2=1, IB1= IB2=0, R1=R2=0.1, �11=0.2,
�12=0.8, �11=0.25, �12=0.25, �12=0.5, �21=0.25, �22
=0.76, �21=0.2, �22=0.2, and �i2=0.6. However, we assume
that we have no prior knowledge about RTD models and we
assume that coupling terms have the general form hi�v1 ,v2�
for all i=1,2 and hi�x ,x�=0 for all x and i.

We add the control terms

u1 = − k�v1 − �1�, u2 = − k�v2 − �2� �10�

to Eqs. �8� and �9�, respectively. By Theorem 1, for any �1
and �2, the coupled system �8� and �9� is driven to a steady
state �s1 ,s2� �depending on �i and k�, satisfying

f i�s1,s2� � − Ji�si� + hi�s1,s2� = k�si − �i� �11�

for all i=1,2.
Letting ��1 ,�2� traverse the area �−2,2�� �−2,2� with

rate 0.1 per step along each axis, we measure the resulting
steady state �s1 ,s2� and scan the value of f i at �s1 ,s2� using
Eq. �11�, as illustrated in Fig. 2 for which k=10. It is easy to
see from Fig. 2�c� that function f1 is estimated with high
accuracy. We have validated that function f2 can also be
estimated with high accuracy �not shown for compactness�.

Noting Eq. �11� and hi�x ,x�=0 for all x, we can identify
RTD model J1 by achieving the intersection curve between
surfaces s1=s2 and the estimated −f1�s1 ,s2�, as illustrated in
Fig. 3. Similarly, we obtain the intersection curve between
surfaces s1=s2 and the estimated −f2�s1 ,s2� to approximate
the RTD model J2 �not shown for compactness�.

We can conclude from Eq. �11� that function hi can be
approximated from the estimated f i�s1 ,s2�+Ji�si�, as shown
in Fig. 4. It is easy to see from Fig. 4�b� that h1 can be
estimated with high accuracy. This implies that there exists a
coupling from the second quantum dot to the first one. Simi-
larly, we can identify h2 and determine the existence of cou-
pling from the first quantum dot to the second one �not
shown for compactness�.

Finally, we assume that two uniformly distributed noises
with amplitude ranging from �0.01 to 0.01 are added to the
right-hand side of Eqs. �8� and �9�, respectively, and we con-
sider the influence of noise on structure identification. As a
typical result Fig. 5 summarizes our results. It is easy to see
from Fig. 5�b� that the structure identification method sug-
gested is robust and we can still estimate function f1 with
high accuracy even in the presence of noise.

FIG. 1. �a� Quantum dot model. �b� Piecewise approximation of
resonant tunneling diode.

BRIEF REPORTS PHYSICAL REVIEW E 78, 017201 �2008�

017201-2



IV. CONCLUSIONS

We showed that driving a system to steady states can
reveal the underlying controlled structure. This structure
identification method can be applied to uncover the coupling
structure �i.e., the dynamics of individual nodes, the coupling
direction, and coupling functions� of coupled systems.

Recently the study of dynamical networks �11–13� has
attracted increasing interest within the nonlinear science
community. The current research focused on understanding
the emerging cooperative phenomena as well as uncovering
the relation between structure and functions of various real
networks such as neurons, power stations, interacting genes,
or coupled nonlinear oscillators. In order to understand the
emerging cooperative dynamic behavior and then the emer-

gent functions of a real network, one first has to identify the
coupling structure �i.e., the dynamics of individual nodes, the
coupling functions, and the connection topology� �13�. We
are now investigating how to extend this structure identifica-
tion method to dynamical networks who support the required
steady-state driving control �at least within a short time
�14��, such as quantum-dot networks �9� and excitable me-
dia. We are also studying if it is possible to reveal system
structure by driving systems to given periodical trajectories.
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APPENDIX: PROOF OF THEOREM 1

We first prove the existence of s, satisfying Eq. �5�,
through the following lemma.

Lemma 1(Th.1�15�). Let g�¯� : IRn→ IRn be continuous.
Let M 	0, a�0, b and c be real numbers such that

xT�g�x� − y� 	 a�x�2 + b�x� + c, if�x� 	 M . �12�

Then g�x�=y has a solution in a ball B�0,r� : = ��x��x��r�,
where we have the following.

�A� r=M, if �i� �b /2a�2−c /a�0 or �ii� �b /2a�2−c /a
�0 and M �−b /2a−	�b /2a�2−c /a.

�B� r=max�M ,−b /2a+	�b /2a�2−c /a�, if �b /2a�2−c /a
�0 and −b /2a−	�b /2a�2−c /a
M. �
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FIG. 2. Identification of function f1. �a� True f1. �b� Estimated
f1. �c� Estimation error.
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FIG. 3. RTD model identification. �a� True RTD model J1 �solid
line� and its estimation ��� in discrete points. �b� Estimation error
of J1 in discrete points shown in �a�.

BRIEF REPORTS PHYSICAL REVIEW E 78, 017201 �2008�

017201-3



sT�k�s − z� − f�s��

= sT�ks − f�s� − kz�

= ksTs − sT�f�s� − f�0�� − sTkz − sTf�0�

	 �k − L��s�2 − �1/2���k + 1��s�2 + k�z�2 + �f�0��2�

= �k/2 − L − 1/2��s�2 − �1/2��k�z�2 + �f�0��2� .

It follows from lemma 1 that there exists a solution in the
ball B�0,	�k�z�2+ �f�0��2� / �k−2L−1�� when k�2L+1.

Next, we analyze the stability of the steady state. Let
e=x−s. Then we get

ė = f�e + s� − f�s� − ke . �13�

Choosing a Lyapunov function V=eTe /2, we have

V̇ = eT�f�e + s� − f�s�� − keTe � − �k − L�eTe ,

which indicates that when k�L, e→0 and thereby the theo-
rem is proved.
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FIG. 4. Identification of coupling function h1�s1 ,s2�=0.1�s2

−s1�. �a� Estimated h1�s1 ,s2� versus s1 and s2. �b� Estimation error
surface.
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FIG. 5. Identification of function f1 in the presence of noise. �a�
Estimated f1 �true f1 has been plotted in Fig. 2�a��. �b� Estimation
error surface.
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